A NEW APPROACH FOR SPEECH EMOTION RECOGNITION USING SINGLE LAYERED CONVOLUTIONAL NEURAL NETWORK

Main Article Content

Mannar Mannan. J
V Vinoth Kumar
Shivakumara Palaiahnakote
Surbhi Bhatia Khan
Ahlam Almusharraf

Abstract

Creating a computational device to identify human emotions via voice analysis represents a notable achievement in the sector of human-computer interaction, especially within the healthcare domain. We propose a new light-weight model for addressing challenges of emotions recognition. The model works based on CNN with change of kernel processing. The proposed model performs a direct matching to recognize speech emotions of different eight categories using a statistical model named Analysis of Variance (ANOVA) as kernel for features extraction and Cosine Similarity Measurement (CSM) as activation function for CNN model. This proposed model contains eight-folded single-layered intermediate neurons, and each neuron can segregate speech emotion pattern using CSM from the voice convergence matrix to explore a part of the solution from the whole solution. Experiment results demonstrates that the proposed model outperforms compared with multiple layered existing CNN methods in identifying the emotional state of a speaker.

Downloads

Download data is not yet available.

Article Details

How to Cite
J, M. M., Kumar, V. V. ., Palaiahnakote, S. ., Khan, S. B. ., & Almusharraf, A. . (2024). A NEW APPROACH FOR SPEECH EMOTION RECOGNITION USING SINGLE LAYERED CONVOLUTIONAL NEURAL NETWORK. Malaysian Journal of Computer Science, 37(1), 89–106. https://doi.org/10.22452/mjcs.vol37no1.6
Section
Articles